# Selected QCD Results from Tevatron

Thomas Nunnemann Fermilab, Batavia, IL, U.S.A.

Representing DØ and CDF

 $31^{\rm st}$  International Symposium on Multiparticle Dynamics Datong,  $4^{\rm th}$  September 2001

- multiple jet production
  - ratios of multijet inclusive cross—sections
  - $\triangleright$  studies of  $E_T$  and relative azimuthal angles
- jet structure
  - transverse energy distributions within jets
  - subjet/charged particle multiplicities

# Topics in QCD at Tevatron

### Generic hadron-hadron collision:



## QCD topics in Run I:

- inclusive jet cross-sections and dijet mass distributions
- direct photon production
- vector boson production
- $b\bar{b}$  production
- hard diffraction, BFKL studies
- multiple jet production (covered here)
- jet structure, multiplicities (covered here)

### Data Sets and Event Kinematics

### Data sets:

- $p\bar{p}$  collisions at  $\sqrt{s}=1.8\,\mathrm{TeV}$  (and  $\sqrt{s}=630\,\mathrm{GeV})$  collected by DØ and CDF
- $\bullet$  Run I (1992-95):  $\sim 110\,\mathrm{pb}^{-1}$  (each experiment) ( $\sim 0.5\,\mathrm{pb}^{-1}$  at  $\sqrt{s}=630\,\mathrm{GeV}$ )
- Run II (since 3/2001, not yet fully operational):  $\sim (2-15) \, \mathrm{fb}^{-1}$  (each experiment)

#### Measured event variables:

- ullet transverse momentum:  $E_T$
- ullet azimuthal angle:  $\phi$
- pseudo-rapidity:  $\eta = -\ln(\tan(\theta/2))$  with polar angle:  $\theta$

### Jets at the Tevatron

## Jet algorithms:

- fixed cone size (most common)
   clustering of calorimeter cells within  $R=\sqrt{\eta^2+\phi^2}\leq R_0$  (usually  $R_0=0.7$ )
- k<sub>T</sub> algorithm
   successive combination algorithm
   based on relative transverse momenta
   of cells (particles)



## Correction to particle level:

- correct for finite energy resolution
- subtract underlying event (modeled by minimum bias data)

⇒ 'hermetic' calorimeter with fine segmentation and excellent energy resolution

DØ:  $\triangleright$  coverage:  $|\eta| < 4.1$ 

> segmentation:  $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$  $(\Delta \eta \times \Delta \phi = 0.05 \times 0.05 \text{ in EM shower maximum})$ 

electromagnetic:  $\Delta E/E \sim 15\%/\sqrt{E[{
m GeV}]}$ 

hadronic:  $\Delta E/E \sim 50\%/\sqrt{E[{\rm GeV}]}$ 

# Ratios of Multijet Cross Sections (I)

Measurement of the ratio of inclusive three-jet to inclusive two-jet cross section:

$$R_{32} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma(p\bar{p} \to \geq 3jets + X)}{\sigma(p\bar{p} \to \geq 2jets + X)}$$

as a function of scalar sum of transv. energies  $H_T = \sum E_T^{\rm jet}$  DØ: PRL 86, 1955 (2001)

#### **Motivation:**

- probing the rate of gluon emission in QCD  $(R_{32} \sim \alpha_s, \text{ c.f. measurements at PETRA})$
- prediction is sensitive to choice of renormalization scales



# Ratios of Multijet Cross Sections (II)



- Jetrad: MC simulation of parton-level jets in NLO
- ullet factorization scale  $\mu_F$  set equal to renormal. scale  $\mu_R$
- a. choose  $\mu_R^{(1,2)}$  for two leading jets proportional to  $H_T$ , vary  $\mu_R^{(3)}$  of  $3^{\rm rd}$  jet (same as  $\mu_R^{(1,2)}$ , proportional to  $E_T^{(3)}$ ) b. choose all  $\mu_R$  proportional to  $E_T^{\rm max}$
- ⇒ within errors (correlated) data can be described by:
  - a.  $\mu_R^{(1,2,3)} \sim 0.3 \, H_T$
  - b.  $\mu_R^{(1,2,3)} \sim 0.6 \, E_T^{\rm max}$
  - $\hookrightarrow$  need for different scale for  $3^{\mathrm{rd}}$  jet not supported

# Multiple Jet Production at low $E_T$ (I)

Study of transverse momentum distributions and relative azimuthal angles in multiple jet production with  $E_T>20\,{\rm GeV}$  DØ: hep-ex/0106072

Large discrepancies between data and Pythia for 3 and 4 jet production for  $E_T$  of leading jet below  $\sim (30-40)\,\mathrm{GeV}$ 



# Multiple Jet Production at low $E_T$ (II)

Relative azimuthal angle in  $\geq$  3-jet events:

- a. between pair with minimal  $\mathbf{q_{ij}} = (\mathbf{E_{T_i}} + \mathbf{E_{T_j}})/(E_{T_i} + E_{T_j})$   $(\Phi_c = \Phi_{ij})$
- b.+c. between  $3^{\rm rd}$  jet and the  $1^{\rm st}$  and  $2^{\rm nd}$  leading jet in pair (cut on  $\pi-\Phi_c<0.4)$



- Leading jets are more back-to-back in data.
- ullet Correlation of  $3^{\rm rd}$  jet with axis of  $2^{\rm nd}$  jet much less pronounced in data.
- c.f. good description of angular distributions for  $E_T > 50 {\rm GeV}$ , DØ: PRD 53, 6000 (1996)
- Observed differences cannot be explained by variations in the modeling of underlying event or multiple-parton scattering.
- BFKL dynamics in low  $Q^2/s$  regime?

# Jet Profiles, Transverse Energy Distributions

Early studies by CDF and DØ of jet profiles as measured by the transverse energy flow within the cone

CDF: PRL 70, 713 (1993); DØ: PL B357, 500 (1995); (now textbook knowledge)

 $\Psi(r)$ : average fraction of the jet  $E_T$  in a sub-cone of radius  $r \leq R = 1$ 



### Learned:

- Large scale dependence in  $\mathcal{O}(\alpha_s^3)$ .
- ullet Jets become narrower with increasing  $E_T$
- Jets have narrower profile in forward region (high x: larger quark contribution in hard scattering)

## Multiplicities in Quark and Gluon Jets

### **Motivation:**

- test of QCD: ratio of number of particles within gluon jets to quark jets expected to be approximately ratio of color charges:  $C_A/C_F=9/4$
- $\bullet$  separation of q and g jets (e.g. for top, W + jet)

### Method:

- ullet select quark and gluon enriched jet samples using average momentum fraction of parton x
  - ▶ low x: gluon dominance
  - ▶ high x: valence quarks
- DØ: compare jets at same  $(E_T,\eta)$  produced at different  $\sqrt{s}$
- CDF: study dependence of multiplicity on dijet mass  $(\sim x_1x_2)$  at fixed  $\sqrt{s}$
- both experiments: obtain relative q/g content from MC simulations (Herwig) and parton distribution functions (PDFs, based on DIS and other data)

# Subjet Multiplicity in q and g Jets

- DØ compares 630 GeV and 1800 GeV data at same  $E_T$  and  $\eta$  and infers q and g jet differences using Herwig 5.9 and CTEQ4M PDF. hep-ex/0106040
- ullet Jets and subjets are defined with  $k_T$  algorithm. Objects are merged into subjets if

$$d_{ij} = min(p_{T_i}^2, p_{T_j}^2) \cdot \frac{\Delta R_{ij}^2}{D^2} < 10^{-3} p_T^{jet}$$



$$\Rightarrow R = \frac{\langle M_g \rangle - 1}{\langle M_q \rangle - 1} = 1.84 \pm 0.15 (\mathrm{stat})^{+0.22}_{-0.18} (\mathrm{sys})$$
  
c.f. Herwig:  $R = 1.91 \pm 0.16$ 

in accordance with naive expect. from color factors  $(\frac{C_A}{C_E} = \frac{9}{4})$ 

# Charged Particle Multiplicity in Jets

- $\bullet$  CDF measures mean charged particle multiplicity in dijet prod. as a function of dijet masses between 80 and 630  ${
  m GeV}/c^2$ . FERMILAB-PUB-01-106-E
- Relative quark/gluon jet contributions are inferred from Herwig and CTEQ4M and CTEQ4HJ PDFs.
- Data are fit within framework of Modified Leading Log Approximation (MLLA) and Local Parton Hadron Duality (LPHD,  $\rightarrow \sharp$  partons to  $\sharp$  hadrons independent of  $E_T$ )



Within MLLA+LPHD scheme:

$$N_{
m partons}^{
m g-jets}/N_{
m partons}^{
m q-jets}=1.7\pm0.3$$
  $N_{
m hadrons}^{
m charged}/N_{
m partons}=0.57\pm0.11$ 

- multiplicity ratio consistent with naive expect. and Herwig
- $\triangleright N_{\rm hadrons} \sim N_{\rm partons}$

# Summary and Outlook

- Tevatron contributes to qualitative and quantitative understanding of higher order effects in QCD.
- ullet Parton Shower MC and NLO calculations can describe most data except in the low  $E_T$  region of multijet production.
- Additional DØ event shape study (transverse thrust) available soon.
- Run II offers good opportunities for QCD measurements, especially at large  $E_T$ .